

NUMERICAL EVALUATION

 OF MARINE BIOMASSESIN GULF OF ALASKA IN GULF OF ALASKA
(Evaluation of minimum sustainable biomasses of fisheries resources in the Gulf of Alaska using the Laevastu-Favorite Bulk Biomass Model)

by
Patricia Livingston
Resource Ecology Task
Resource Ecology and Fisheries Management Division

DECEMBER 1977

U.S. DEPARTMENT OF COMMIDRCE

National Dceanic and Atmospheric Admimistration National Marine Fisheries Service Northwest and Maska Fisheries Center

2725 Montlake Bonlevard East Seattic, Washington 98112

NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

NUMERICAL EVALUATION OF MARINE BIOMASSES
 IN THE GULF OF ALASKA
 (Evaluation of minimum sustainable biomasses of fisheries resources in the Gulf of Alaska using the Laevastu-Favorite Bulk Biomass Model)

By

Patricia Livingston*

* Resource Ecology and Fisheries Management Division, Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112

ABSTRACT

The minimum sustainable biomasses of marine fisheries resources in the Gulf of Alaska are computed using a Bulk Biomass Model (BBM). The BBM method is compared to virtual population analysis and found to be more suitable for resource evaluation because it permits direct computation of the ecosystem internal consumption (grazing), which constitutes the greatest part of natural mortality. Results are presented in tabular and graphical form and compared with earlier exploratory fishery survey results. Consumption by mammals far exceeds the total commercial catch; consequently it is suggested that management of marine mamals should be an integra1 part of fisheries management.

CONTENTS

Page
Abstract 2

1. Introduction 7
2. Method 8
2.1 Rationale for the method 8
3. Input data 13
4. Results 28
4.1 Minimum sustainable biomasses and turnover rates of marine ecological groups 28
4.2 Consumption by marine birds and mammals. 48
5. Conclusions 58
6. Acknowledgments 59
7. References 60

List of Tables

Table 1.--Computation areas.
Table 2.--Number of fur seals (in thousands) in computation subareas.
Table 3.--Number of sea lions (in thousands) in computation subareas.
Table 4.--Estimated number of harbor seals and ringed/ribbon seals (in thousands) in computation subareas.

Table 5.--Number of sperm whales in computation subareas.
Table 6.--Number of toothed whales in computation subareas.
Table 7.--Number of baleen whales in computation subareas.
Table 8.--Estimated number of porpoises and dolphins (including beluga) in computation subareas.

Table 9.--Number of marine birds per km^{2} in computation subareas.
Table 10.--Mean weights of mamals and birds.
Table 11.--Composition of food of mammals and birds.
Table 12.--Growth and mortality coefficients.

Table 13.--Food consumption (and/or requirements).
Table 14.--Composition of food of plankton and fish.
Table 15.--Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of marine ecological groups from N. Vancouver Island to Dixon Entrance, 10^{3} metric tons.

Tab1e 16.--Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of marine ecological groups from Dixon Entrance to Cape Spencer, 10^{3} metric tons.

Table 17.--Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of marine ecological groups from Cape Spencer to Kenai Peninsula, 10^{3} metric tons.

Table 18.--Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of marine ecological groups from Kenai Peninsula to Chirikof Island, 10^{3} metric tons.

Table 19.--Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of marine ecological groups from Chirikof Island to Unimak Pass, 10^{3} metric tons.

Table 20.--Minimum sustainable biomass in tons per km^{2} for marine ecological groups in the Gulf of Alaska.

Table 21.--Minimum sustainable biomasses, annual consumption (10^{3} metric tons), and turnover rates for marine ecological groups in the Gulf of Alaska summarized by depth.

Table 22.--Total minimum sustainable biomass, ecosystem internal consumption (10^{3} metric tons), and turnover rates of ecological groups in the Gulf of Alaska.

Table 23.--Comparison of model results with survey estimates.
Table 24.--Comparison of model results for Gulf of Alaska with estimates for the North Sea.

Table 25.--Consumption by fur seals (10^{3} metric tons/year).
Table 26.--Consumption by harbor and ringed/ribbon seals (10^{3} metric tons/year).
Table 27.--Consumption by sea lions (10^{3} metric tons/year).
Table 28.--Consumption by toothed whales (including porpoises and dolphins) (10^{3} metric tons/year).

Table 29.--Consumption by baleen whales (10^{3} metric tons/year).
Table 30.--Consumption by marine birds (10^{3} metric tons/year).
Table 31.--Comparison of consumption and fishery for marine ecological groups (10^{3} metric tons/year).

List of Figures

Figure 1.--Schematic presentation of quasi-equilibrium state of a standing stock as basis for computation of minimum sustainable biomass (B).

Figure 2.--The region covered by the model and the computational subareas.
Figure 3.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of squid (10^{3} metric tons).

Figure 4.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of herring (10^{3} metric tons).

Figure 5.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of other pelagic fish (10^{3} metric tons).

Figure 6.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of pollock (10^{3} metric tons).

Figure 7.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of rockfish (10^{3} metric tons).

Figure 8.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of flatfish (10^{3} metric tons).

Figure 9.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of other gadids (10^{3} metric tons).

Figure 10.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of other demersal fish (10^{3} metric tons).

Figure 11.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of crustaceans (10^{3} metric tons).

1. INTRODUCTION

The Bulk Biomass Model (BBM) devised at the Northwest and Alaska Fisheries Center (NWAFC) (Laevastu and Favorite 1977a) has been used previously to determine minimum sustainable biomasses of ecological groups off the California, Oregon, and Washington coasts and in the Bering Sea. This basically trophodynamic model has been revised and adapted to ascertain estimates of minimum standing stocks which can be sustained in the ecosystem, and turnover rates of marine ecological groups In coastal and offshore waters from British Columbia to the Alaskan Peninsula.

The classical fisheries production models are inappropriate for determining sustainable biomasses of fish because of complex trophic ecosystem interactions, and it is virtually impossible to predict production of an ecological group without knowing its relation to other organisms in the food chain. Food composition, efficiency of biomass transfer, and position of a particular fish group in the food web (if the food chain can be defined) are factors that affect not only the potential production of a particular fish group, but also the total abundance of fish in a particular area. Man's selective "cropping", which changes the relative abundance of species groups, increases the complexity of the marine ecosystem.

The BBM provides a method to quantify the basic consumption relations between fish and other animal groups in the Gulf of Alaska region and to estimate the respective, minimum, sustainable biomasses, given growth rates, fishing mortality, and mortality from diseases and old age of the various ecological groups in the system. "Minimum sustainable biomass" is defined as the biomass of a species or ecological groups which, with a given growth rate and computed ecosystem internal consumption, neither declinesnor increases within a year in a defined region. As there can be a family of sustainable biomasses in an ecosystem the "minimum" level is considered directed by mammal and base species input. The effect of fish migrations
on the minimum sustainable biomass computations is not included in the model, but this could be added. However, at the present time, results obtained from the BBM model are used as first-guess inputs to another larger model, DYNUMES, in which migrations are programmed.

2. METHOD

The assumption and logic of the model are basically unchanged from the previous BBM models (Laevastu and Favorite, 1976 and 1977a). The basic assumptions made in the computation of minimum sustainable biomasses for each ecological fish group are that a quasi-equilibrium biomass state is maintained throughout the year and no migration and/or advection into or out of the area occurs. Consequently it is assumed that the increase in biomass is equal to the removal. Removal is the sum of grazing, fishery, and mortality--where grazing represents the ecosystem internal consumption, fishery is the loss due to fishing removal, and mortality is merely the losses due to old age and disease (Figure 1). More explicit information on the computational formulas used in the model are given by Laevastu and Favorite (1977a).

2.1 Rationale for the method:

As catch data are most readily available to the fishery biologist these are often used to estimate population size. Gulland's (1965) method of virtual population analysis (VPA) estimates fishing mortality, F_{i}, and stock size, N_{i}, at successive ages, $i,(i=0,1,2, \ldots n)$ using catch statistics, a previous estimate of natural mortality, M, and the fishing mortality of the oldest age group, F_{n}. The computational formulas for VPA are:

Advection $=0$

Mean standing stock $=B$ $B=\frac{R e}{G r} \times 100$

Removal (Re) =

Consumption (grazing) +
Fishery +

Growth $\approx f$ (species, age), given as rate \% per month

Figure 1,--Schematic presentation of quasi-equilibrium state of a standing stock as basis for computation of minimum sustainable biomass (B).

$$
\begin{align*}
& C_{i}=N_{i} \frac{F_{i}}{F_{i}+M}\left[1-e^{-\left(F_{i}+M\right)}\right] \tag{1}\\
& N_{i+1}=N_{i} e^{-\left(F_{i}+M\right)} \tag{2}
\end{align*}
$$

The process involves first obtaining N_{n} from (1) using the given estimates of F_{n}, M, and C_{i} (C_{i} is the catch of year class at the age i), and next solving (2) for N_{n-1}. Thus pairs of $\left(F_{i}, N_{i}\right)$ are obtained from successive backcalculation through formulas (1) and (2). The cohort analysis of Pope (1971) is similar except with respect to computation.

As Beyer (1976) notes there are three serious sources of error in this method, the estimates M, F_{n}, and C_{i} : the backcalculation procedure tends to magnify further the error involved in the computation of each (F_{i}, N_{i}) especially if the "known" parameters are poorly estimated; natural mortality, M, is an estimate of many sources of mortality (i.e. predation, disease, old age); and, although the sources and magnitude of mortality may vary considerably in space and time, M is usually considered as a constant for a particular group of fish in most fisheries models.

The BBM separates natural mortality into two sources; the mortality due to old age and disease, and mortality from grazing. The mortality from old age and disease is usually quite small in an exploited population and can be estimated to be 1 to 2% per month, depending on the species. The largest component of mortality, grazing, is computed directly in the model from food composition and food requirement data, thus elfminating largely the great uncertainty in the estimation of M. The composition of food is constant in the BBM model and is ascertained as a mean composition from available literature. Food composition and food requirements are variable in space and time in the advanced DYNUMES III model (Laevastu and Favorite 1977c). Since grazing on a particular fish group is exercised by many predator species and the magnitude of grazing depends on the total biomass of these predators present and their grazing preference of the particular species, the model must consider the interactions between the
consumption and growth of as many fish groups in an area as possible. Most other models do not recognize the dependence of natural mortality on interactions (i.e. through trophodynamics) with other fish groups. Consumption of fish by birds and mammals is also taken into consideration here as it is of considerable magnitude in the Gulf of Alaska area. Also included in the model are estimates of fishing mortality from catch statistics.

Model Formulation:

Monthly biomass balance formula:

$$
\begin{align*}
& B_{i, t}=B_{i, t-1}\left(2-e^{-g_{i, t}}\right) e^{-n}-C_{i, t-1} \tag{3}\\
& \text { where } g_{i, t}=g_{i, 0}+g_{i, a} \cos \left(\alpha t-\mathcal{X}_{i, a}\right) \tag{4}
\end{align*}
$$

Food requirements and food proportioning formulas:

$$
\begin{gather*}
F_{i, t}=B_{i, t-1}\left(2-e^{\left.-g_{t}\right)} K_{i, g}+B_{i, t} K_{i, m}\right. \tag{5}\\
C_{i, j, t}=F_{i, t} \rho_{i, j} \\
C_{i, k, t}=F_{i, t} \rho_{i, k}-\text { etc. } \tag{6}\\
C_{i, t}=C_{u, i, t}+C_{i, i, t}+\ldots C_{n, i, t} \tag{7}
\end{gather*}
$$

The symbols in the above equations are:
$B_{i, t}$ - minimum sustainable biomass (either total for the region or as $\mathrm{kg} / \mathrm{km}^{2}$) of ecological group i in month t.
$g_{i, t}$ - monthly bulk growth coefficient (approximately growth in \% per month) (g_{0} is mean growth coefficient and g_{a} is the annual range of its change \notin is phase lag and α phase speed $=30^{\circ}$ per month).
$F_{i, t}$ - food requirement for growth and maintenance.
n - fishing mortality coefficient (approximate \% per month).
$K_{i, g}$ - food coefficient for growth (e.g. $1: 3,3 \mathrm{~kg}$ of food biomass gives 1 kg of growth), for ecological group i.
$K_{i, m}$ - food coefficient for maintenance (in terms of body (biomass) weight per time step), for ecological group i.
$C_{i, t}$ - total amount of ecological group i consumed by other groups in unit time (month).
$\rho_{i, j}$ - proportion of ecological group j in the food of group i.

To initialize computations a first-guess biomass figure for each fish group in each "box" area is entered into the model; monthly amounts of mammals and birds in each computation area are also defined. All monthly biomasses and consumptions for a full year are then computed and corrections for the initial biomass estimates are made:

$$
\begin{equation*}
B_{i, \text { corr }}=B_{i, 1}+\left(B_{i, 1}-B_{i, 12}\right) / 12 \tag{8}
\end{equation*}
$$

where $B_{i, ~ c o r r ~}$ is the corrected biomass of species $i, B_{i, 1}$ is the initial guess for January and $B_{i, 12}$ is the computed biomass for December. The iteration process is continued until the solution converges and the obtained biomasses are the computed minimum sustainable biomasses for the system. Results are only partially dependent on the initial guess input, thus, the BBM considers the growth of biomass and the multi-species interactions that may cause changes in biomass through trophodynamics. This is a definite advantage over singlespecies models which cannot explain or predict changes in natural mortality through time.

Although the theory behind the BBM is valid and produces reasonable results, the method does have some limitations. Although partially dependent on the initial biomass inputs, the results are even more dependent on the estimates of average food composition which have no spatial or temporal variation in this
model. Such variation is, however, introduced into our more advanced DYNUMES model, as are migration and environmental influences which are not considered here. Model sensitivity studies, frequently applied to simple explicit single-species models, lose their meaning in the present model, as any study of the limits of input parameters is an extensive study of pertinent subject matter, and is better conducted with the DYNUMES model.

3. INPUT DATA

Computations have been made for the region from the northern tip of Vancouver Island to Unimak Pass, and from the coast to 200 nautical miles offshore (Figure 2). Five areas are defined within this region.

1. North of Vancouver Island to the Dixon Entrance.
2. Dixon entrance to Cape Spencer.
3. Gulf of Alaska from Cape Spencer to the tip of the Kenai Peninsula.
4. Gulf of Alaska from the Kenai Peninsula to Chirikof Island.
5. The Alaskan Peninsula from Chirikof Island to Unimak Pass.

Each area was divided into 3 subareas, from the coast to 200 m depth; from 200 m to 1000 m depth; and from 1000 m to 200 nautical miles offshore (Table 1).

The inclusion of mammals into the model is essential for the evaluation of marine resources because in some regions they can be greater consumers of fish than man (Laevastu and Favorite 1976). Most marine mammals in the Gulf of Alaska are migratory, moving to feeding grounds mainly in the summer and migrating south or offshore in other seasons. The inputs for marine mammals reflect this monthly variation in distribution except for the few species that are stationary (Tables 2-8). Estimation of mammal populations is controversial at the present time and because of this uncertainty we have tried to make conservative estimates of marine mammals. Some species of mammals have been grouped together according to feeding habits and composition of food taking into consideration mean sizes of the animals involved.

Figure 2.--The region covered by the model and the computational subareas.

Consumption by marine birds has also been included in the model. The distribution of marine birds is also of a seasonal nature and is dependent on distance from shore. The bird populations are estimated from various sources and are in numbers $/ \mathrm{km}^{2}$ (Table 9), and the mean weights of mammals and birds which allows conversion from numbers to biomass as required for trophodynamic computations is presented (Table 10).

The food composition of birds and marine mammals (Table 11) has also been extracted from various sources. There is a great variation in food composition with space and time, but it is not computationally possible to take this variation into consideration in this model as data on this subject are very fragmented and uncertain as yet.

The growth and mortality coefficients used in the model are shown in Table 12. The growth coefficient for a given biomass is very much age dependent as discussed by Laevastu and Favorite (1977b). Growth is also dependent on time of year, food availability, and temperature which, although they are not taken into consideration in this model, are considered in our DYNUMES model. To compensate for the lack of spatial and temporal variation in the growth coefficient, it has been made a sinusoidal function of time throughout the year (see Equation 4).

The customary mortality coefficient, usually denoted as Z, has been divided into three parts. The largest component, grazing, is computed directly in the model. The fishing mortality coefficient, F, is adjusted to reflect the present or potential fishery on a species. Fishing mortality can be changed in different model runs but the numbers used for the present report are indicated (Table 12). The mortality due to old age and diseases, denoted here as natural mortality, is relatively small in most species groups. Estimates for natural mortality are also given. In some cases natural and fishing mortalities have been used as a single coefficient which should not affect the results.

Table 1
Computation Areas

Area No.	Geographical limits	Depth range	$\text { Square } \frac{\text { Are }}{\text { Mí }}$	Square km
1	North of Vancouver	0-200m	16,939	58,100
2	Island to	200-1000m	5,889	20,200
3	Dixon Entrance	$1000 \mathrm{~m}-200 \mathrm{n} . \mathrm{mil}$.	50,585	173,500
		Total	73,413	251,800
4	Dixon Entrance to	0-200m	14,986	51,400
5	Cape Spencer	200-1000m	6,677	22,900
6		1000m-200 n. mil.	40,788	139,900
		Total	62,451	214,200
7	Cape Spencer to	0-200m	25,423	87,200
8	Kenai Peninsula	200-1000m	6,618	22,700
9		1000m-200 n. mil.	37,610	129,000
		Total	69,651	238,900
10	Kenai Peninsula to	0-200m	22,799	78,200
11	Chirikof Island	200-1000m	8,397	28,800
12		1000m-200 n. mil.	21,954	75,300
		Total	53,150	182,300
13	Chirikof Island to	0-200m	20,758	71,200
14	Unimak Pass	200-1000m	6,851	23,500
15		1000m-200 n. mil.	32,333	110,900
		Total	59,942	205,600
		Total all areas	318,607	1,092,800

Table 2
Number of fur seals (in thousands) in computation subareas

Table 3
Number of sea lions (in thousands) in computation subareas
Subareas

Table 4

Estimated number of harbor seals and ringed/ribbon seals (in thousands) in computation subareas.

Area	Number	Area	Number
1	4	9	0
2	0.8	10	5
3	0	11	0
4	6	12	0
5	0.9	13	8
6	0	14	0
7	3	15	0
8	0.5		0

Table 5
Number of sperm whales in computation subareas
Subareas

Table 6
Number of toothed whales* in computation subareas

[^0]Subareas

Estimated number of porpoises and dolphins (including beluga) in computation subareas.

Area	Number	Area	Number
1	500	9	300
2	150	10	400
3	350	11	120
4	450	12	80
5	200	13	500
6	300	14	120
7	650	15	80
8	150		

Table 9
Number of marine birds per km^{2} in computation subareas
Subareas

Table 10
 Mean weights of mammals and birds

Fur seals 55 kg
Sea lions 250 kg
*Harbor seals and ringed/ribbon seals 95 kg
Baleen whales $40,000 \mathrm{~kg}$
**Toothed whales $10,000 \mathrm{~kg}$
Marine birds 0.4 kg
Porpoises, dolphins 100 kg

* Mean weight of the "mixture" of seals
** Except sperm $=30,000 \mathrm{~kg}$ (accounted separately)

Table 11

Composition of food of mamals and birds

Fur seals	Harbor and ringed/ribbon seals
40\% pollock	70\% benthos
18\% rockfish	10\% pollock
4\% other pelagic fish	5\% flatfish
5\% herring	5\% crustaceans
11\% squids	10\% other demersal fish
1\% salmon	
18\% other gadids	
3% others	Sea 1ions
	60\% pollock
Baleen whales	20\% rockfish
	10\% other pelagic fish
70\% euphausids	4\% salmon
14\% copepods	6\% others
9\% squids	
3\% herring	
4\% other pelagic fish	Toothed whales, porpoises, dolphins
-	20\% squids
Marine birds	20\% herring
	24\% other pelagic fish
35\% herring	4\% salmon
5\% flatfish	22\% pollock
5\% other gadids	2\% other gadids
5\% pollock	8\% others
5\% rockfish	
10\% others	
20\% euphausids	
10\% squids	
5\% benthos ?	

Table 12
Growth and mortality coefficients

	Growth*	Total Mortality**	$\frac{\text { Natural }}{\text { Morta }}$	$\frac{\text { Fishir }}{\text { ties** }}$
Squids	0.138 to 0.258	0.045	(0.045)	
Herring	0.115 to 0.228	0.03	0.02	0.01
Salmon	0.04 to 0.08	0.036	0.006	0.03
Other pelagic fish	0.115 to 0.288	0.035	0.02	0.015
Pollock	0.075 to 0.120	0.035	0.01	0.015
Other gadids	0.065 to 0.145	0.025	0.01	0.015
Rockfish	0.065 to 0.115	0.035	0.02	0.015
Flatfish	0.065 to 0.105	0.035	0.02	0.015
Other demersal fish	0.06 to 0.12	0.02	0.015	0.005
Benthos ("fish food" benthos)	0.10	0.035	(0.035)	
Crustaceans	0.128	0.03	(0.03)	
*Growth and mortality coefficients are in \% of biomass per month. Growth coefficient was made a harmonic function of time: minimum and maximum values are given in this table.				
**Total mortality is a sum of fishing mortality and natural mortality (of old age and diseases); it was used in most computations. However, in some computations the natural and fishing mortalities were computed separately.				

To compute the amount of food consumed by a particular ecological group the food requirements for growth and maintenance must be known. Sometimes it is possible to separate the two but, in other cases, a single general food coefficient is used. The food requirements for ecological groups in the model are given (Table 13). Again, these are conservative values because the purpose here is to compute minimum sustainable biomasses. Composition of food for plankton and fish is also given (Table 14).

4. RESULTS

4.1 Minimum sustainable biomasses and turnover rates of marine ecological groups.

The BBM estimates for minimum sustainable biomass, ecosystem internal consumption (grazing), and the calculated turnover rates are given for each of the respective subareas (Tables 15-19) and summarized (Figures 3-11). To allow comparisons between areas of different sizes, biomass in tons $/ \mathrm{km}^{2}$ is also computed (Table 20). The biomass in terms of tons $/ \mathrm{km}^{2}$ for total finfish decreases outwards from the coast. Proceeding northward from the southernmost region, the biomass shows a slight increase up to the head of the Gulf of Alaska (subareas 7-9) and decreases thereafter to the westward (subareas 10-15).

Turnover rate trends with depth and distance from coast are compared (Table 21). For most ecological groups, turnover rate seems to increase with depth. High turnover rates may indicate that starvation may be a common occurrence especially in open waters. The total minimum sustainable biomasses and turnover rates for each ecological group (Table 22) indicate that, with the exception of herring, turnover rates in pelagic groups are generally higher than in the demersal communities. The group "other demersal fish" exhibits the highest turnover rate and an explanation for this phenomenon is not available at present. Explaining trends in turnover rates is a difficult task as the

Food consumption (and/or requirements)

	A. Fish, plankton and benthos
Squids	
Salmon	$1: 3$ for growth only
Herring and other pelagic fish	$1: 2$ for growth $+0.9 \%$ body weight daily
for maintenance	

Table 14
Composition of food of plankton and fish

Zooplankton	Other demersal fish	Crustaceans
100\% phytoplankton	37% benthos	30\% benthos
	22\% euphausids	5\% f1atfish
Squids	12\% copepods	5\% rockfish
	13\% flatfish	19\% euphausids
20\% copepods	6\% other gadids	6\% crustaceans
30\% euphausids	4.5\% pollock	10\% copepods
25\% herring	3.5\% other pelagic fish	24\% phytoplankton
25\% other pelagic fish	2\% herring	1\% other gadids
Other pelagic fish	Herring	Other gadids
66\% copepods	71\% copepods	28\% benthos
16\% euphausids	12\% euphausids	20\% euphausids
10\% phytoplankton	15\% phytoplankton	14\% copepods
8\% other pelagic fish	2\% other pelagic fish	10\% other demersal
Pollock	Sa1mon	9\% pollock
		8\% other pelagic
6\% herring	25\% herring	fish
0.5\% salmon	35\% other pelagic fish	4\% herring
10\% squids	15\% squids	7\% flatfish
5\% other pelagic fish	15\% euphausids	
50\% euphausids	10\% pollock	
3\% flatfish		
6.5\% rockfish	Rockfish	
9\% benthos		
3\% pollock	2.5\% herring	
2\% other demersal fish	4.5\% crustaceans	
3\% crustaceans	2\% other pelagic fish	
2% other gadids	15\% euphausids 9\% squids	
Flatfish	35\% benthos	
	20\% other demersal fish	
58\% benthos	3\% rockfish	
17\% other demersal fish	3\% flatfish	
4\% flatfish	3\% pollock	
4\% rockfish	3% other gadids	
4\% pollock		
9\% euphausids		
1.5\% herring		
2.5\% crustaceans		

Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of ecological groups in the Gulf of Alaska, 10^{3} metric tons.

N. Vancouver Island to Dixon Entrance

Ecological group	Mean biomass	1. $0-200 \mathrm{~m}$ Annual consumption	Annual turnover rate	Mean biomass	$\begin{aligned} & \text { 200-1000 } \\ & \text { Annual } \\ & \text { consumption } \end{aligned}$	Annual turnover rate	3. Mean biomass	$\begin{aligned} & 1000 \mathrm{~m}-200 \\ & \text { Annual } \\ & \text { consumption } \end{aligned}$	miles Annual turnover rate
Squid	83.8	81.4	0.97	31.3	26.1	0.83	93.4	109.7	1.17
Herring	337.9	175.2	0.52	77.3	60.0	0.78	170.9	220.2	1.29
Other pelagic fish	224.8	$315.6{ }^{\circ}$	1.40	70.6	104.1	1.47	311.9	402.4	1.29
Pollock	128.6	93.2	0.72	38.3	31.3	0.82	126.0	123.1	0.98
Rockfish	74.8	88.9	1.19	24.8	26.8	1.08	108.6	87.9	0.81
Flatfish	225.4	104.2	0.46	67.5	38.9	0.58	161.9	152.3	0.94
Other gadids	33.6	37.2	1.11	15.5	13.2	0.85	62.6	57.9	0.92
Other demersal fish	108.1	156.9	1.45	41.0	49.3	1.20	160.8	143.4	0.89
Crustaceans	111.4	58.8	0.53	38.9	19.8	0.51	157.5	77.2	0.49
Benthos	1,059.7	720.3	0.68	303.6	243.4	0.80	662.1	816.9	1.23
Total finfish	1,133.2	971.2	0.86	335.0	323.6	0.97	1,102.7	1,187.2	1.08

Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of ecological groups in the Gulf of Alaska, 10^{3} metric tons.

Dixon Entrance to Cape Spencer

Table 17
Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of ecological groups in the Gulf of Alaska, 10^{3} metric tons.

Cape Spencer to Kena1 Peninsula

Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of ecological groups in the Gulf of Alaska, 10^{3} metric tons.

Kenai Peninsula to Chirikof Island

Ecological group	Mean biomass	10. $0-200 \mathrm{~m}$ Annual consumption	Annual turnover rate		$200-1000 \mathrm{~m}$ Annual consumption	Annual turnover rate	12. Mean biomass	$00 m-200 n$ Annual consumption	miles Annual turnover rate
Squid	95.1	122.1	1.28	33.6	33.2	0.99	23.7	33.4	1.41
Herring	335.3	226.5	0.68	63.0	66.0	1.05	52.9	55.7	1.05
Other pelagic fish	305.7	398.5°	1.30	65.0	100.8	1.55	80.3	99.6	1.24
Pollock	212.5	123.3	0.58	52.4	34.0	0.65	44.3	27.4	0.62
Rockfish	127.8	151.5	1.18	45.5	41.1	0.90	52.0	32.4	0.62
Flatfish	291.0	157.7	0.54	100.8	47.2	0.47	54.9	39.3	0.72
Other gadids	48.8	56.9	1.17	15.2	15.7	1.03	18.0	14.5	0.81
Other demersal fish	139.9	215.4	1.54	47.4	78.7	1.66	37.5	61.8	1.65
Crustaceans	218.3	107.8	0.49	54.2	30.3	0.56	45.9	27.3	0.59
Benthos	1,466.2	1,060.2	0.73	385.8	341.5	0.89	199.9	255.9	1.28
Total finfish	1,461.0	1,329.8	0.91	389.3	383.5	0.98	339.9	330.7	0.97

Minimum sustainable biomass, ecosystem internal consumption, and turnover rates of ecological groups in the Gulf of Alaska, 10^{3} metric tons.

Chirikof Island to Unimak Pass

Ecological group	Mean biomass	13. $0-200 \mathrm{~m}$ Annual consumption	Annual turnover rate	Mean biomass	200-1000 m Annual consumption	Annual turnover rate	15. 1 Mean biomass	$0 \mathrm{~m}-200 \mathrm{n}$ Annual consumption	miles Annual turnover rate
Squid	85.1	110.7	1.30	27.8	27.7	1.00	34.1	46.9	1.38
Herring	200.2	206.7	1.03	43.0	54.5	1.27	76.5	77.8	1.02
Other pelagic fish	286.3	352.5*	1.23	54.2	82.4	1.52	116.5	141.2	1.21
Pollock	195.0	126.5	0.65	44.5	26.9	0.60	64.3	37.8	0.59
Rockfish	117.1	154.4	1.32	37.7	34.6	0.92	76.6	47.6	0.62
Flatfish	325.4	157.4	0.48	79.0	38.9	0.49	80.9	57.9	0.72
Other gadids	38.8	54.7	1.41	12.6	12.9	1.02	26.5	21.1	0.80
Other demersal fish	139.7	221.0	1.58	37.6	62.6	1.66	55.3	91.2	1.65
Crustaceans	233.2	109.7	0.47	47.6	26.0	0.55	67.7	40.3	0.60
Benthos	1,261.9	1,115.4	0.88	313.9	277, 3	0,88	294.6	377.2	1.28
Total finfish	1,302.5	1,273.2	0.98	308.6	312.8	1.01	496.6	474.6	0.96
-									
-									

Figure 3.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of squid (10^{3} metric tons).

$\angle \varepsilon$

Figure 4.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of herring (10^{3} metric tons).

ω_{∞}

Figure 5.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of other pelagic fish (10^{3} metric tons).

Figure 6. --Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of pollock (10^{3} metric tons).

Figure 7.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of rockfish (10^{3} metric tons).

Figure 8. --Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of flatfish (10^{3} metric tons).

Figure 9.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of other gadids (10^{3} metric tons).

Figure 10.--Minimum sustainable biomass (B), ecosystem internal consumption (C), and annual turnover (T) of other demersal fish (10^{3} metric tons).

Table 20
Minimum sustainable biomass in tons $/ \mathrm{km}^{2}$ for marine ecological groups in the Gulf of Alaska

GrouplSubarea	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Squid	1.44	1.55	0.54	1.26	1.54	0.50	1.79	1.36	0.41	1.22	1.17	0.31	1.20	1.18	0.31
Herring	5.82	3.83	0.99	5.94	3.35	1.02	6.16	3.14	0.94	4.29	2.19	0.70	2.81	1.83	0.69
Other pelagic fish	3.87	3.50	1.80	3.78	4.01	1.84	3.49	3.53	1.72	3.91	2.26	1.07	4.02	2.31	1.05
Pollock	1.90	0.73	2.41	2.10	0.85	2.51	1.96	0.71	2.72	1.82	0.59	2.74	1.89	0.58	0.38
Rockfish	1.29	1.23	0.63	1.50	1.47	0.57 .	1.60	1.60	0.56	1.64	1.58	0.69	1.64	1.60	0.69
Flatfish	3.88	3.34	0.93	4.05	3.53	0.91	4.61	3.86	0.77	3.72	3.50	0.73	4.57	3.36	0.73
Other gadids	0.58	0.77	0.36	0.63	0.89	0.43	0.59	0.75	0.33	0.62	0.53	0.24	0.55	0.54	0.24
Other demersal fish	1.86	2.03	0.93	1.94	2.25	0.84	2.08	1.88	0.51	1.79	1.65	0.50	1.96	1.60	0.50
Crustaceans	1.92	1.93	0.91	1.94	2.10	0.79	2.48	1.97	0.75	2.79	1.88	0.61	3.28	2.03	0.61
Benthos	18.24	15.03	3.82	20.59	14.51	3.16	18.38	13.97	2.77	18.75	13.40	2.66	17.72	13.36	2.66
Total finfish	19.2	15.43	8.05	19.94	16.35	8.12	20.49	15.47	7.55	17.79	12.3	6.67	17.44	11.83	4.28

Table 21
Minimum sustainable biomasses, annual consumption (10^{3} tons), and turnover rates for ecological groups in the Gulf of Alaska summarized by depth.

Table 22
Total minimum sustainable biomass, ecosystem internal consumption (10^{3} tons), and turnover rates of ecological groups in the Gulf of Alaska.

Ecological group	Mean biomass	Annual consumption	Annual turnover rate
Squid	917.9	$1,046.2$	1.14
Herring	$2,609.8$	$2,059.9$	0.79
Other pelagic fish	$2,665.4$	$3,608.0$	1.35
Pollock	$1,551.4$	$1,114.9$	0.72
Rockfish	$1,103.1$	$1,103.3$	1.00
Flatfish	$2,391.7$	$1,353.3$	0.57
Other gadids	$1,325.9$	495.8	$1,858.2$
Other demersal fish	$1,590.1$	821.0	0.97
Crustaceans	$10,058.0$	$8,856.8$	1.40
Benthos	$12,143.1$	$11,578.7$	0.52
Total finfish			0.88

turnover rate for a particular group is a function of growth rate, biomass present, and consumption of the group in question.

The model results are supported by other survey results in the Gulf of Alaska (Table 23). Alverson, Pruter, and Ronholt (1964) values correspond well to the model's computed values if it is assumed that 50% of the population is exploitable (Laevastu and Favorite 1977b). The NEGOA results (Ronholt, Shifpen, and Brown 1976), however, are somewhat higher than either the Alverson et al. and the model estimates if it is assumed that they present 50% of the biomass. This could be due to NEGOA's limited sampling period (May-August 1975), the uncertainty of catchability coefficient used, and the fact that values in this paper present minimum sustainable biomasses.

The North Sea has been studied intensively and estimates for the two areas (North Sea and Gulf of Alaska) are compared in Table 24. It should be kept in mind, however, that the North Sea is shallower and more enclosed than the Gulf of Alaska.

4.2 Consumption by marine birds and mammals.

The estimated consumption of marine resources by marine birds and mamals is summarized in Tables 25-30. The mammals consuming the greatest amount of marine resources in the Gulf of Alaska appear to be toothed whales, which consume large amounts of pelagic fish and pollock. The commercial catch of pollock is very small, only about $1 / 4$ of the pollock consumption by toothed whales (Table 31). Fur seals and sea lions also prey heavily on pollock; the pollock consumption by pinnipeds is about twice the present catch of pollock. Although consumption by birds is considerably less than the consumption by mamals, birds are still important consumers of fishery resources as they feed quite heavily on herring as well as at times on young salmon. Also apparent

Table 23

Comparison of model results with survey estimates

Areas 1, 4, 7, 10, 13			Area 7		
Biomass (tons)	Alverson et al. (1964)*	Model	Biomass (tons $/ \mathrm{km}^{2}$)	NEGOA (1975)*	Model
Flatfish	7.26×10^{5}	1.45×10^{6}	Flatfish	3.05	4.61
Rockfish	2.73×10^{5}	5.36×10^{5}	Rockfish	0.31	1.60
Roundfish	4.35×10^{5}	1.08×10^{6}	Roundfish	1.98	2.55
			Invertebrates	1.91	2.48

*Survey estimates in which the coefficient of catchability assumed $=1.0$

Table 24

Comparison of model results for Gulf of Alaska with estimates for the North Sea

Gulf of A1aska North Sea (1969-1970)*
Fish biomass (10^{3} tons)
$12,143.1$
4,900.
Area (km ${ }^{2}$)
Fish biomass (tons $/ \mathrm{km}^{2}$)
Consumption (10^{3} tons)
Turnover rate
0.95
1.04

Table 25
Consumption by fur seals (10^{3} metric tons/year)

Consumption by harbor and ringed/ribbon seals (10^{3} metric tons/year)

Tab1e 27
Consumption by sea lions (10^{3} metric tons/year)

Consumption by toothed whales (including sperm whales, porpoises and dolphins) (10^{3} metric tons/year).
Subareas

Ecological Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Squid	15.07	6.23	41.66	7.50	10.41	40.90	15.06	4.63	38.31	9.47	2.24	2.60	11.49	1.30	1.83	208.70
Herring	15.07	6.23	41.66	7.50	10.41	40.90	15.06	4.63	38.31	9.47	2.24	2.60	11.49	1.30	1.83	208.70
Other pelagic fish	18.09	7.48	49.99	9.01	12.48	49.07	18.06	5.56	45.96	11.36	2.69	3.13	13.79	1.56	2.20	250.43
Salmon	3.02	1.25	8.33	1.51	2.08	5.91	3.01	0.93	7.66	1.89	0.45	0.52	2.30	0.26	0.36	39.48
Pollock	16.59	6.86	45.82	8.25	11.44	45.00	16.57	5.11	42.14	10.41	2.47	2.86	12.64	1.44	2.03	229.63
Other gadids	1.50	0.62	4.17	0.75	1.04	4.10	1.51	0.46	3.84	0.95	0.22	0.25	1.14	0.13	0.18	20.86
Others	6.03	2.50	16.66	3.00	4.15	16.35	6.01	1.86	15.32	3.74	0.90	1.05	4.60	0.53	0.74	83.44
Total	75.37	31.17	208.29	37.52	52.01	202.23	75.28	23.18	191.54	47.29	11.21	13.01	57.45	6.52	9.17	1041.24

Table 29
Consumption by baleen whales (10^{3} metric tons/year).

Ecological Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
haus	7.06	2.89	9.81	1.08	2,35	9.81	6.22	1.08	8.33	0.74	0.97	1.38	1.08	0.37	1.01	54.18
Copepods	1.41	0.58	1.96	0.22	0.47	1.96	1.24	0.22	1.67	0.15	0.19	0.28	0.22	0.07	0.20	10.84
Squid	0.91	0.37	1.26	0.14	0.30	1.26	0.80	0.14	1.07	0.10	0.13	0.18	0.14	0.05	0.13	6.98
Herring	0.30	0.12	0.42	0.05	0.10	0.42	0.27	0.05	0.36	0.03	0.04	0.06	0.05	0.02	0.04	2.33
Other pelagic fish	0.40	0.17	0.56	0.06	0.13	0.56	0.36	0.06	0.48	0.04	0.06	0.08	0.06	0.02	0.06	3.10
Total	10.08	4.13	14.01	1.55	3.35	14.01	8.89	1.55	11.91	1.06	1.39	1.98	1.55	0.53	1.44	77.43

Consumption by marine birds (10^{3} metric tons/year).

Ecological Group	1	2	3	4	5	6	$\frac{\text { ubarea }}{7}$	8	9	10	11	12	13	14	15	Total
Euphausids	4.25	0.28	0.11	3.61	0.47	0.09	3.97	0.29	0.08	5.04	0.36	0.08	3.49	0.26	0.12	22.50
Squid	2.13	0.14	0.05	1.81	0.23	0.04	1.98	0.15	0.04	2.52	0.18	0.04	1.74	0.13	0.06	11.24
Herring	7.44	0.49	0.19	6.32	0.82	0.16	6.94	0.51	0.14	8.83	0.62	0.14	6.10	0.46	0.21	39.37
Po11ock	1.06	0.07	0.03	0.90	0.12	0.02	0.99	0.07	0.02	1.26	0.09	0.02	0.87	0.07	0.03	5.62
Rockfish	1.06	0.07	0.03	0.90	0.12	0.02	0.99	0.07	0.02	1.26	0.09	0.02	0.87	0.07	0.03	5.62
Flatfish	1.06	0.07	0.03	0.90	0.12	0.02	0.99	0.07	0.02	1.26	0.09	0.02	0.87	0.07	0.03	5.62
Other gadids	1.06	0.07	0.03	0.90	0.12	0.02	0.99	0.07	0.02	1.26	0.09	0.02	0.87	0.07	0.03	5.62
Benthos	1.06	0.07	0.03	0.90	0.12	0.02	0.99	0.07	0.02	1.26	0.09	0.02	0.87	0.07	0.03	5.62
Others	2.13	0.14	0.05	1.81	0.23	0.04	1.98	0.15	0.04	2.52	0.18	0.04	1.74	0.13	0.06	11.24
Total	21.25	1.40	0.55	18.05	2.35	0.43	19.82	1.45	0.40	25.21	1.79	0.40	17.42	1.33	0.60	112.45
									,							
		,														

Table 31
Comparison of consumption and fishery for marine ecological groups (10^{3} metric tons)

Ecological group	Ecosystem internal consumption	Consumption by birds	Consumption by mammals	$\begin{gathered} \text { Fishery* } \\ \text { (1975 statistics) } \end{gathered}$
Squid	1,046.2	11.2	230.2	
Herring	2,059.9	39.4	217.6	
Other pelagic fish	3,608.0	-	265.6	
Pollock	1,114.9	5.6	328.0	48.0
Rockfish	1,103.3	5.6	37.3	44.0
Flatfish	1,353.3	5.6	2.4	13.0
Other gadids	481.1	5.6	44.6	5.0
Other demersal fish	1,858.2	-	4.8	56.0
Crustaceans	821.0	-	2.4	79.0
Total finfish	11,578.7	61.8	1,132.9	

* From communication Japanese Fishery Agency and Fishery Management Plan and Environmental Impact Statement
for the Gulf of Alaska groundfish fishery during 1978
in Table 31 is the magnitude of the ecosystem internal consumption which is high compared to removal of resources by birds, mammals, and man.

5. CONCLUSIONS

1) The quantitative results of minimum sustainable biomasses by groups of species and subareas, consumption, and turnover rates are presented for the coastal regime in the Gulf of Alaska.
2) The model seems to produce reasonable estimates of minimum sustainable biomass as compared to estimates from survey techniques.
3) The ecosystem internal consumption is higher than customarily estimated natural mortality coefficients have indicated in the past. The present data can thus be used for revision of these natural mortality coefficients (M) for use in conventional population dynamics methods.
4) The consumption of fish by mammals in the Gulf of Alaska is considerably higher than total commercial catch. Consequently any sensible fisheries management requires the management of marine mamals as well.

6. ACKNOWLEDGMENTS

Thanks goes to Mrs. Marjorie Gregory for her patience in deciphering and typing this report and the numerous tables within; to James Hastings and Carol Oswald for assistance with the figures; and last, but not least, to Dr. Taivo Leavastu for the many helpful suggestions and explanations that enabled this report to be written.

7. REFERENCES

Alverson, D.L., A.T. Pruter, and L.L. Ronholt.
1964. A study of demersal fishes and fisheries of the northeastern Pacific

Ocean. H.R. MacMillan Lectures in Fisheries, 190 p.
Anderson, K.P. and E. Ursin.
1977. A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Meddr. Danm. Fisk.-og Havunders. N.S. 7, 319-435.

Beyer, J.E.
1976. Ecosystems, an operational research approach. Inst. of Math. Stat. and Operations Research. The Technical University of Denmark, 315 p. Gulland, J.E.
1965. Estimation of mortality rates. Annex. to Arctic Fisheries Working Group Report. ICES C.M. 1965, No. 3, Gadoid Fish.

Laevastu, T. and F. Favorite.
1976. Evaluation of standing stock of marine resources in the Eastern Bering Sea. NWAFC Proc. Rep., October. 35 p.

Laevastu, T. and F. Favorite.
1977a. Minimum sustainable biomasses of marine ecological groups off central and northern California, Oregon, Washington, and Vancouver Island coasts. NWAFC Proc. Rep. 60 p.

1977b. Ecosystem model estimations of the distribution of biomass and predation with age for five species in the Bering Sea. NWAFC Proc. Rep., August. 41 p. 1977c. Preliminary report on Dynamical Numerical Marine Ecosystem model (DYNUMES II) for eastern Bering Sea. NWAFC Proc. Rep., August. 81 p.

Pope, J.G.
1971. An investigation of the accuracy of the virtual population analysis.

ICNAF, Res. Doc., 1971.
Ronholt, L.L., H.H. Shippen, and E. S. Brown.
1976. An assessment of the demersal fish and invertebrate resources of the northeastern Gulf of Alaska, Yakutat Bay to Cape Cleare, May-August 1975.

NEGOA Annual Report (Northwest Fisheries Center Processed Report), 184 p.

[^0]: * except sperm whales

